For a partially multiplicative quandle (PMQ) ${\mathcal {Q}}$ we consider the topological monoid $\mathring {\mathrm {HM}}({\mathcal {Q}})$ of Hurwitz spaces of configurations in the plane with local monodromies in ${\mathcal {Q}}$. We compute the group completion of $\mathring {\mathrm {HM}}({\mathcal {Q}})$: it is the product of the (discrete) enveloping group ${\mathcal {G}}({\mathcal {Q}})$ with a component of the double loop space of the relative Hurwitz space $\mathrm {Hur}_+([0,1]^2,\partial [0,1]^2;{\mathcal {Q}},G)_{\mathbb {1}}$; here $G$ is any group giving rise, together with ${\mathcal {Q}}$, to a PMQ–group pair. Under the additional assumption that ${\mathcal {Q}}$ is finite and rationally Poincaré and that $G$ is finite, we compute the rational cohomology ring of $\mathrm {Hur}_+([0,1]^2,\partial [0,1]^2;{\mathcal {Q}},G)_{\mathbb {1}}$.