We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Johannes Kepler was working as a mathematics teacher in Austria when he had a vision of how the universe must be constructed. Using the Copernican system as his model, Kepler thought that between each planetary orbital sphere was nested a regular polyhedron. There are only five regular polyhedra, so there could be only six planets. The relative sizes of the planetary orbits were set by the shapes that lay between them. Kepler’s idea caught the attention of Tycho Brahe and eventually he became Tycho’s assistant. When Tycho died, Kepler inherited Tycho’s accurate planetary data and he used these data to propose a new theory of planetary motion. Kepler found that the planets move in elliptical orbits with the Sun at one focus of the ellipse. Furthermore, Kepler believed the motion of the planets was powered by a force from the Sun that caused the planets to speed up when closer to the Sun and slow down when farther away. Kepler also discovered a curious mathematical relationship between the orbital periods of the planets and the size of the planetary orbits.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.