We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hazardous material (HAZMAT) protocols require health care providers to wear personal protective equipment (PPE) when caring for contaminated patients. Multiple levels of PPE exist (level D - level A), providing progressively more protection. Emergent endotracheal intubation (ETI) of victims can become complicated by the cumbersome nature of PPE.
Study Objective:
The null hypothesis was tested that there would be no difference in time to successful ETI between providers in different types of PPE.
Methods:
This randomized controlled trial assessed time to ETI with differing levels of PPE. Participants included 18 senior US Emergency Medicine (EM) residents and attendings, and nine US senior Anesthesiology residents. Each individual performed ETI on a mannequin (Laerdal SimMan Essential; Stavanger, Sweden) wearing the following levels of PPE: universal precautions (UP) controls (nitrile gloves and facemask with shield); partial level C (PC; rubber gloves and a passive air-purifying respirator [APR]); and complete level C (CC; passive APR with an anti-chemical suit). Primary outcome measures were the time in seconds (s) to successful intubation: Time 1 (T1) = inflation of the endotracheal tube (ETT) balloon; Time 2 (T2) = first ventilation. Data were reported as medians with Interquartile Ranges (IQR, 25%-75%) or percentages with 95% Confidence Intervals (95%, CI). Group comparisons were analyzed by Fisher’s Exact Test or Kruskal-Wallis, as appropriate (alpha = 0.017 [three groups], two-tails). Sample size analysis was based upon the power of 80% to detect a difference of 10 seconds between groups at a P = .017; 27 subjects per group would be needed.
Results:
All 27 participants completed the study. At T1, there was no statistically significant difference (P = .27) among UP 18.0s (11.5s-19.0s), PC 21.0s (14.0s-23.5s), or CC 17.0s (13.5s-27.5s). For T2, there was also no significant (P = .25) differences among UP 24.0s (17.5s-27.0s), PC 26.0s (21.0s-32.0s), or CC 24.0s (19.5s-33.5s).
Conclusion:
There were no statistically significant differences in time to balloon inflation or ventilation. Higher levels of PPE do not appear to increase time to ETI.