We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The avoidance of asthma triggers, like tobacco smoke, facilitates asthma management. Reliance upon caregiver report of their child’s environmental tobacco smoke (ETS) exposure may result in information bias and impaired asthma management. This analysis aimed to characterize the chronicity of ETS exposure, assess the validity of caregiver report of ETS exposure, and investigate the relationship between ETS exposure and asthma attack.
Methods:
A secondary data analysis was performed on data from a longitudinal study of 162 children aged 7–12 years with asthma living in federally subsidized housing in three US cities (Boston, Cincinnati, and New Orleans). Data were collected at three time points over 1 year.
Results:
Over 90% of children were exposed to ETS (≥0.25 ng/ml of urine cotinine (UC)). Exposure was consistent over 1 year. Questionnaire data had a sensitivity of 28–34% using UC ≥0.25 ng/ml as the gold standard. High ETS exposure (UC ≥ 30 ng/ml) was significantly associated with asthma attack (aOR 2.97, 0.93–9.52, p = 0.07). Lower levels (UC 0.25–30 ng/ml) were not statistically significant (aOR 1.76, 0.71– 4.38, p = 0.22). No association was found using caregiver-reported ETS exposure.
Conclusion:
Relying on questionnaire data to assess children’s exposure to tobacco smoke may lead to substantial information bias. For children with asthma, incorrect characterization may substantially impact asthma morbidity.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.