A viscous fluid is confined between two smooth horizontal walls, in a vertical channel. The upper wall may move with constant speed, but the lower wall is stationary and a portion of it is heated. A plume of heated fluid develops, and may also be swept downstream by the motion of the upper wall. When the heating effect is small and the upper plate does not move, a closed-form solution for the temperature profile is presented. A numerical spectral method is then presented, and allows highly accurate nonlinear solutions to be obtained, for the temperature and the fluid motion. These are compared against the closed-form solution in the linearized case, and the effects of nonlinearity on temperature and velocity are revealed. The results also show that periodic plume shedding from the heated region can occur in the nonlinear case.