Laboratory experiments were conducted to determine the effects of nonionic surfactants and reaction media (water, glass, and corn leaf residue) on photolysis and subsequent phytotoxicity of chlorimuron and metsulfuron residues. Oxysorbic and octoxynol enhanced rates of chlorimuron and metsulfuron photolysis in aqueous solution and on glass slides compared to controls with no surfactant. Enhanced photolysis of chlorimuron by surfactants was greatest on glass, where 93 and 89% loss occurred after 48 h exposure to ultraviolet light in the presence of oxysorbic and octoxynol, respectively, compared to 38% loss with no surfactant. Similarly, surfactant-enhanced metsulfuron photolysis was greatest on glass with 37 and 67% loss after 48 h exposure in the presence of oxysorbic and octoxynol, respectively, compared to 9% loss with no surfactant. Photolysis of herbicides deposited on corn leaf residue was significantly slower than that on glass or in aqueous media at all exposure times and metsulfuron photolysis on corn residue was enhanced by surfactants only after 144 h exposure. Bioassays confirmed that phytotoxicity of photolyzed herbicide residues was negatively correlated (r=-0.94 for chlorimuron and r=-0.92 for metsulfuron) with loss of parent herbicide as measured by liquid chromatography.