We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a positive integer $n\geq 2$, let $M_{n}$ be the set of $n\times n$ complex matrices and $H_{n}$ the set of Hermitian matrices in $M_{n}$. We characterize injective linear maps ${\it\phi}:H_{m_{1}\cdots m_{l}}\rightarrow H_{n}$ satisfying
for all $A_{k}\in H_{m_{k}}$, $k=1,\dots ,l$, where $l,m_{1},\dots ,m_{l}\geq 2$ are positive integers. The necessity of the injectivity assumption is shown. Moreover, the connection of the problem to quantum information science is mentioned.
We prove that a continuous map $\phi $ defined on the set of all $n\times n$ Hermitian matrices preserving order in both directions is up to a translation a congruence transformation or a congruence transformation composed with the transposition.
Hua’s fundamental theorem of the geometry of hermitian matrices characterizes bijective maps on the space of all $n\times n$ hermitianmatrices preserving adjacency in both directions. The problem of possible improvements has been open for a while. There are three natural problems here. Do we need the bijectivity assumption? Can we replace the assumption of preserving adjacency in both directions by the weaker assumption of preserving adjacency in one direction only? Can we obtain such a characterization formaps acting between the spaces of hermitian matrices of different sizes? We answer all three questions for the complex hermitian matrices, thus obtaining the optimal structural result for adjacency preserving maps on hermitian matrices over the complex field.
Let ${{\mathcal{H}}_{n}}$ be the real linear space of $n\,\times \,n$ complex Hermitian matrices. The unitary (similarity) orbit $\mathcal{U}\left( C \right)$ of $C\,\in \,{{\mathcal{H}}_{n}}$ is the collection of all matrices unitarily similar to $C$. We characterize those $C\,\in \,{{\mathcal{H}}_{n}}$ such that every matrix in the convex hull of $\mathcal{U}\left( C \right)$ can be written as the average of two matrices in $\mathcal{U}\left( C \right)$. The result is used to study spectral properties of submatrices of matrices in $\mathcal{U}\left( C \right)$, the convexity of images of $\mathcal{U}\left( C \right)$ under linear transformations, and some related questions concerning the joint $C$-numerical range of Hermitian matrices. Analogous results on real symmetric matrices are also discussed.
Let T be a linear transformation acting on the space of n x n complex matrices. Let G(k) be the set of all hermitian matrices with k positive and n — k negative eigenvalues. Let T map some indefinite inertia class G(k) onto itself. We classify all such T. The possibilities are congruence, congruence followed by transposition, and, if n = 2k, it is possible that — T can be a congruence or a congruence followed by transposing. In other words, negation is an admissible transformation when n = 2k.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.