We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter is a step towards understanding why quantum nonlocalityis a misleading concept. Metaphorically speaking, quantum nonlocality isJanus faced. One face is an apparent nonlocality of the state update basedon the Luders projection postulate. It can be referred as intrinsic quantumnonlocality. And the other face is subquantumnonlocality: by introducing a special model with hidden variables onederives the Bell inequality and claims that its violation implies the existenceof mysterious instantaneous influences between distant physical systems(Bell nonlocality). According to the Luders projection postulate, aquantum measurement performed on one of the two distant entangled physicalsystems, say on S1, modifies instantaneously the state of S2. Therefore, ifthe quantum state is considered to be an attribute of the individual physicalsystem (Copenhagen interpretation) and if one assumes thatexperimental outcomes are produced in a random way one arrives at the contradiction. It is a primary source of speculation about aspooky action at the distance. But Einstein had already pointed out that the quantum paradoxes disappear, ifone adopts the statistical interpretation.
The hidden variable project realized by Bell contradicts the uncertaintyand complementarity principles. The inequalities derived with Bell’s hidden variablesare violated for quantum observables. Thus, Bell’s hidden variables shouldbe rejected and the validity of quantum theory is confirmed. (This foundationalachievement deserved the Nobel Prize in 2022.) This scientific loop,ignorance of the uncertainty and complementarity principles – hidden variablesmodel – Bell’s inequalities – their violation – reestablishing the validityof the uncertainty and complementarity principles, was stimulating for quantumfoundations. However, Bohr and Heisenberg might say that such resultscan be expected from the very beginning. For them, the uncertainty andcomplementarity principles form the basis of quantum physics. And theycan’t be rejected, since they are the consequences of the so-called quantum postulate– the existence of an indivisible quantum of action given by Planck’sconstant h. The quantum postulate is the ontological basis of quantum theory.I formulated its epistemic counterpart in the form of the principle ofquantum action invariance.
This is the first ever English translation of Heisenberg’s unpublished response to the EPR paper. In this chapter, Heisenberg uses his famous cut argument to argue against the possibility of hidden variables.
This chapter introduces in more comprehensive fashion than elsewhere in the literature the interesting role of Heisenberg in the EPR debate. Although we have already published an analysis of Heisenberg’s posthumously published draft response to EPR, only now are we able to situate this excellent primary source in its fullest context, by contributing a chapter describing, for example, Heisenberg’s thinking prior to EPR about interacting systems and hidden variables, the crucial role of Grete Hermann for Heisenberg’s thinking about separability, completeness and observational context, and describing the correspondence between Heisenberg and Bohr discussing Heisenberg’s manuscript.
This chapter begins a short, two-chapter section on calculations that specifically impact the philosophy of quantum mechanics. A quantitative discussion of the famous Einstein–Podalsky–Rosen (EPR) experiment is given, as well as a mathematical discussion of problems with the many-worlds hypothesis, the Bohmian pilot-wave hypothesis, and the “transactional” hypothesis for interpreting quantum mechanics.
After having shown in previous chapters that wave-particle duality is not a fundamental problem for quantum mechanics, this chapter introduces the really strange effect of quantum mechanics, namely “nonlocal correlations” that appear to act over long distances faster than the speed of light. The “Copenhagen” interpretation of quantum mechanics is introduced, which puts human knowledge in a special role, and some of the philosophical objections to it.
We present a few of the gedanken- and real experiments that demonstrate the spookiness of quantum mechanics. We discuss the Einstein,Podolsky, and Rosengedankenexperiment that invokes hidden variables to create a paradox. We analyze Bell’s analysis of the paradox, which shows that the predictions of quantum mechanics are inconsistent with local hidden variable theories. We discuss the Schrödinger cat paradox, and the Copenhagen interpretation of quantum mechanics.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.