The objective of this work was to determine the rumen fermentation characteristics of maize land races used as forage in central Mexico. In vitro gas production (ml per 200 mg dry matter (DM)) incubations were carried out, and cumulative gas volumes were fitted to the Krishnamoorthy et al. (1991) model. The trial used a split-plot design with cultivation practices associated with maize colour (COL) as the main plot with three levels: white, yellow and black maize; growing periods (PER) were the split plots where PER1, PER2 and PER3 represented the first, second and third periods, respectively and two contrasting zones (Z1=valley and Z2=mountain) were used as blocking factors. The principal effects observed were associated with the maturity of the plants and potential gas production increased ( P<0·05) in stems (PER1=51·8, PER2=56·3, PER3=58·4 ml per 200 mg DM) and in whole plant (PER1=60·9, PER2=60·8, PER3=70·9 ml per 200 mg DM). An inverse effect was observed with fermentation rates in leaves ( P<0·01) with 0·061, 0·053 and 0·0509 (per h) and in whole plant ( P<0·05) with 0·068, 0·057, 0·050 (per h) in PER1, PER2 and PER3 respectively. The digestibility of the neutral-detergent fibre (NDF) decreased with maturity especially in leaves ( P<0·05) with values of 0·71, 0·67 and 0·66 g/kg; in rachis ( P<0·01) 0·75, 0·72, and 0·65 in PER1, PER2 and PER3 respectively. The NDF content in leaves in leaves (668, 705 and 713 g/kg DM for PER1, PER2 and PER3, respectively), stems (580, 594 and 644 g/kg DM) and, husk (663, 774 and, 808 g/kg DM) increased ( P<0·05) with increasing plant maturity, rachis were significantly different between periods ( P<0·01). The structure with the best nutritive characteristics was the husk, because it had the lowest fibre contents, especially in acid-detergent lignin, with values of 22·6, 28·6 and 37·6 g/kg DM in PER1, PER2 and PER3, respectively.