X-ray photoemission spectroscopy using synchrotron radiation from 100 to 1486.6 eV was used to investigate polarity-dependent differences between the Zn-polar (0001) and the O-polar () faces of ultrahigh vacuum cleaved hydrothermally grown ZnO single crystals. The cleaved polar surfaces showed a characteristic polarity effect in that the intensity of emission from the lowest binding energy O 2p related valence band states was significantly stronger on the Zn-polar face, even when the cleaved surfaces were imperfect with irregular nonatomically flat features. A residual submonolayer hydroxyl termination of approximately 0.5 ML was observed on both the Zn-polar and O-polar surfaces immediately after cleaving. The near-surface downward band bending on the O-polar face was removed by the cleaving process leaving almost flat bands, while on the cleaved Zn-polar face, emission from states above the valence band edge was observed.