Links between germination, DNA replication and β-tubulin accumulation were studied with cabbage (Brassica oleracea L.) seeds, by using flow cytometric analysis of nuclear DNA content and immunodetection of β-tubulin levels. The seeds were incubated in water or 0.1–500 mM hydroxyurea solutions. Radicle tips isolated from dry cabbage seeds revealed most 2C (Go or G1 stage) and some 4C (G2 stage) signals of nuclear DNA contents and a constitutive level of β-tubulin. The onset of DNA replication in the radicle tip was observed between 12 and 24 h of imbibition in water and was preceded by an increase of β-tubulin levels. Incubation of the seeds in 1 mM hydroxyurea retarded DNA replication, whereas an arrest of DNA replication occurred upon incubation in 10 mM hydroxyurea or higher concentrations. The arrest of DNA replication and cell division did not block radicle protrusion and allowed some extension of the radicle. This demonstrated that DNA replication is not a prerequisite for radicle protrusion and initial extension. However, further seedling development, including root growth and root hair development, was dependent on DNA replication. Accumulation of β-tubulin was not affected by hydroxyurea. Thus, it can be deduced that both DNA replication and β-tubulin accumulation are two parallel and independent cell cycle events during seed germination.