Real ideals of the ring ℜL of real-valued continuous functions on a completely regular frame L are characterized in terms of cozero elements, in the manner of the classical case of the rings C(X). As an application, we show that L is realcompact if and only if every free maximal ideal of ℜL is hyper-real—which is the precise translation of how Hewitt defined realcompact spaces, albeit under a different appellation. We also obtain a frame version of Mrówka’s theorem that characterizes realcompact spaces.