We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Higher dimensional analogues of the modular group $\mathit{PSL}(2,\mathbb{Z})$ are closely related to hyperbolic reflection groups and Coxeter polyhedra with big symmetry groups. In this context, we develop a theory and dissection properties of ideal hyperbolic $k$-rectified regular polyhedra, which is of independent interest. As an application, we can identify the covolumes of the quaternionic modular groups with certain explicit rational multiples of the Riemann zeta value $\unicode[STIX]{x1D701}(3)$.
For compact hyperbolic 3-manifolds we lift the Bloch invariant defined by Neumann and Yang to an integral class in K3(ℂ). Applying the Borel and the Bloch regulators, one gets back the volume and the Chern-Simons invariant of the manifold. We perform our constructions in stable homotopy theory, pushing a generalized orientation of the manifold directly into K-theory. On the way we give a purely homotopical construction of the Bloch-Wigner exact sequence which allows us to explain the ℚ/ℤ ambiguity that appears in the non-compact case.
The cusp density of a hyperbolic 3-manifold is the ratio of the largest possible volume in a set of cusps with disjoint interiors to the volume in the manifold. It is known that all cusp densities fall in the interval $[0,0.853\dots]$. It is shown that the cusp densities of finite-volume orientable hyperbolic 3-manifolds are dense in this interval.