We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the dynamics induced by homogeneous polynomials on Banach spaces. It is known that no homogeneous polynomial defined on a Banach space can have a dense orbit. We show a simple and natural example of a homogeneous polynomial with an orbit that is at the same time $\unicode[STIX]{x1D6FF}$-dense (the orbit meets every ball of radius $\unicode[STIX]{x1D6FF}$), weakly dense and such that $\unicode[STIX]{x1D6E4}\cdot \text{Orb}_{P}(x)$ is dense for every $\unicode[STIX]{x1D6E4}\subset \mathbb{C}$ that either is unbounded or has 0 as an accumulation point. Moreover, we generalize the construction to arbitrary infinite-dimensional separable Banach spaces. To prove this, we study Julia sets of homogeneous polynomials on Banach spaces.
We describe a class of topological vector spaces admitting a mixing uniformly continuous operator group with holomorphic dependence on the parameter t. This result builds on those existing in the literature. We also describe a class of topological vector spaces admitting no supercyclic strongly continuous operator semigroups .
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.