We prove the birational rigidity of Fano complete intersections of index 1 with a singular point of high multiplicity, which can be close to the degree of the variety. In particular, the groups of birational and biregular automorphisms of these varieties are equal, and they are non-rational. The proof is based on the techniques of the method of maximal singularities, the generalized 4n2-inequality for complete intersection singularities and the technique of hypertangent divisors.