We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Growing evidence suggests that air pollution exposure may adversely affect the brain and increase risk for psychiatric disorders such as schizophrenia and depression. However, little is known about the potential role of air pollution in severity and relapse following illness onset.
Aims
To examine the longitudinal association between residential air pollution exposure and mental health service use (an indicator of illness severity and relapse) among individuals with first presentations of psychotic and mood disorders.
Method
We identified individuals aged ≥15 years who had first contact with the South London and Maudsley NHS Foundation Trust for psychotic and mood disorders in 2008–2012 (n = 13 887). High-resolution (20 × 20 m) estimates of nitrogen dioxide (NO2), nitrogen oxides (NOx) and particulate matter (PM2.5 and PM10) levels in ambient air were linked to residential addresses. In-patient days and community mental health service (CMHS) events were recorded over 1-year and 7-year follow-up periods.
Results
Following covariate adjustment, interquartile range increases in NO2, NOx and PM2.5 were associated with 18% (95% CI 5–34%), 18% (95% CI 5–34%) and 11% (95% CI 3–19%) increased risk for in-patient days after 1 year. Similarly, interquartile range increases in NO2, NOx, PM2.5 and PM10 were associated with 32% (95% CI 25–38%), 31% (95% CI 24–37%), 7% (95% CI 4–11%) and 9% (95% CI 5–14%) increased risk for CMHS events after 1 year. Associations persisted after 7 years.
Conclusions
Residential air pollution exposure is associated with increased mental health service use among people recently diagnosed with psychotic and mood disorders. Assuming causality, interventions to reduce air pollution exposure could improve mental health prognoses and reduce healthcare costs.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.