Infections with Theileria parva in the African buffalo are invariably asymptomatic, whereas infections in cattle usually result in clinical disease, the severity of which varies in different populations of cattle. The parasite exhibits antigenic heterogeneity, which in cattle manifests as differences between parasite strains in their cross-protective properties. A series of studies on T cell responses to T. parva in cattle have demonstrated that class I MHC-restricted cytotoxic T lymphocytes (CTL), specific for parasitized lymphoblasts, are important mediators of immunity. Cytotoxic T cell responses frequently display parasite strain-restricted specificities which appear to correlate with the capacity of strains to cross-protect. The strain specificity of CTL responses varies in animals immunized with the same parasite strain and is influenced by both host and parasite genotype. Recent studies have provided evidence that there is competition between epitopes for induction of CTL responses, which can result in a bias to strain-specific epitopes. These properties of the CTL response have important implications for vaccination. Thus, in designing a vaccine, it may be possible, by selecting parasite proteins containing appropriate CTL epitopes, to generate CTL responses that protect against a wide range of parasite strains. Although there are no comparable data on CTL responses in the buffalo, it is considered that the features of the immune response described for cattle would be advantageous for survival of parasite populations in the buffalo. Specifically, a bias in the immune responses to strain-specific determinants should favour establishment of infection in buffalo already carrying the parasite and allow fluctuation in the levels of different parasite strains during the course of persistent infection.