We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We have investigated the influence in volumetric-modulated arc therapy (VMAT) plans by a sequence of increment of gantry angle (IGA) in definitive radiotherapy treatment for cervical cancer. The plans are quantitatively analysed in terms of conformity index (CI), heterogeneity index (HI), dose–gradient index (DGI), target coverage (TC) by prescription dose, monitor unit (MU) usage, control points (CPs) and dose to organs.
Materials and Methods:
In this retrospective study, we selected 27 patients with cervical cancer having aged between 54 and 69. All the patients enrolled in this study were at T3N1M0 stage of cervical cancer. The prescription dose to planning target volume (PTV) was 50 Gy and was administered in 2 Gy/fraction through VMAT technique. VMAT plans were optimised by varying the parameter ‘IGA’ as 10, 20, 30 and 40°.
Results:
Homogenous dose distribution within PTV and TC by prescription dose was significantly enhanced (p < 0·05) with larger IGA. The difference between volume receiving 15 Gy (V15Gy) in bowel was up to 10% with larger IGA (30 and 40°) and V25Gy in femoral head was up to 3% with smaller IGA (10 and 20°). CPs were enhanced and MU usage was reduced with larger IGA (30 and 40°). IGA 40° had reduced the MU usage than IGA 30° but the CI and DGI were compromised due to large MLC field segments.
Conclusion:
This study recommends that the larger IGA could yield better results when the number of sectors is even, for a cervical cancer patient. However, more data from more patients need to be obtained and analysed to make this an evidence-based hypothesis.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.