We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The algebra of one-sided inverses of a polynomial algebra Pn in n variables is obtained from Pn by adding commuting left (but not two-sided) inverses of the canonical generators of the algebra Pn. The algebra is isomorphic to the algebra
of scalar integro-differential operators provided that char(K) = 0. Ignoring the non-Noetherian property, the algebra belongs to a family of algebras like the nth Weyl algebra An and the polynomial algebra P2n. Explicit generators are found for the group Gn of automorphisms of the algebra and for the group of units of (both groups are huge). An analogue of the Jacobian homomorphism AutK-alg (Pn) → K* is introduced for the group Gn (notice that the algebra is non-commutative and neither left nor right Noetherian). The polynomial Jacobian homomorphism is unique. Its analogue is also unique for n > 2 but for n = 1, 2 there are exactly two of them. The proof is based on the following theorem that is proved in the paper:
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.