We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the constrained-degree percolation model in a random environment (CDPRE) on the square lattice. In this model, each vertex v has an independent random constraint $\kappa_v$ which takes the value $j\in \{0,1,2,3\}$ with probability $\rho_j$. The dynamics is as follows: at time $t=0$ all edges are closed; each edge e attempts to open at a random time $U(e)\sim \mathrm{U}(0,1]$, independently of all the other edges. It succeeds if at time U(e) both its end vertices have degrees strictly smaller than their respective constraints. We obtain exponential decay of the radius of the open cluster of the origin at all times when its expected size is finite. Since CDPRE is dominated by Bernoulli percolation, this result is meaningful only if the supremum of all values of t for which the expected size of the open cluster of the origin is finite is larger than $\frac12$. We prove this last fact by showing a sharp phase transition for an intermediate model.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.