We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Identifying patients with chronic musculoskeletal pain using database searches is difficult, as chronic pain is not represented with a unique diagnostic code in electronic primary care records.
Aim
This paper describes the development and implementation of a search strategy to identify patients with chronic musculoskeletal pain in primary care databases to invite them to participate in a randomised controlled trial.
Methods
We used an exploratory, iterative approach. The first phase involved consultations with IT specialists, practice managers and doctors to gain an understanding about the processes and issues of electronic coding. In the second and third phases, we determined the most appropriate search terms and strategies. In the final phase, we tested, modified and re-tested the search strategy until the quantity and quality of the output appeared good enough to be used in general practices with different IT systems. This strategy was then implemented to recruit participants for a trial.
Findings
We identified three main search ‘domains’: prescribing, coding and attendance. We found the most useful identifier for chronic pain was the use of repeat medication. Wide variations in coding terms for chronic pain were seen between practices and individuals. Understanding ‘coding cultures’ were necessary to inform the electronic searches. In the case of chronic pain, searching on repeat medication for analgesia, low dose antidepressants and carefully selected coding terms captured most relevant patients.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.