We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To evaluate three prototype versions of semi-quantitative end-tidal CO2 monitors with different alarm features during prehospital or inter-facility use.
Methods:
Subjects were 43 adult, non-pregnant patients requiring intubation, or who already were intubated and required transport. Teams at one AirEvac and seven Advanced Life Support (ALS) paramedic stations were trained in the use of the monitors. Team members at each station evaluated each model for eight days. Participants completed questionnaires following each use.
Results:
The monitors performed properly in all cases, but in one case, vomit in the airway adapter tube prevented obtaining a readout. The monitors aided management in 40 of 43 cases (93%); in one, the monitor reading was reported as variable (between 20 and 30 mmHg) although the teams knew the monitors were semi-quantitative; in another, the monitor was not required, but performed properly; and the third was the one in which vomit in the tube prevented a reading. In 26 of 43 cases (60.4%), the monitor was used to confirm endotracheal tube placement (there were no instances of incorrect placement). In all cases, the devices were used to monitor respiration and oxygen saturation. Alarms were audible in the environment, but only preferred in the AirEvac situation. The “breath beep” feature was useful, particularly in patients in whom chest movements during respiration were difficult to observe.
Conclusions:
“Breath beeps” were clearly audible and were a useful feature in all prehospital and transport environments, while audible alarms were desired only in the AirEvac situation. Semi-quantitative CO2 detection is valuable in the ALS/AirEvac environment, even for teams with high intubation success rates.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.