We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Primate locomotor development is a protracted process. We summarize the time course of locomotor development in approximately 50 primates distributed across the extant radiation. Despite substantial variance, we identify several broad trends. Primates are somewhat precocial at birth – born with their eyes open and able to strongly grasp. Locomotor onset age generally increases with body mass, although certain taxonomic groups (e.g., lemurids and cercopithecids) develop early for their size whereas others (e.g., indriids and hominids) develop relatively late. Initial locomotor movements are similar across primates and dominated by quadrupedal crawling. Only later do more specialized forms of locomotion emerge (e.g., leaping and brachiation), often in concert with functional changes in musculoskeletal anatomy (e.g., maturation of intermembral indices, center of mass position, and bony muscle leverage). We advocate viewing locomotor development as a fundamental life-history parameter, responding to the same evolutionary pressures shown to be fundamental to other aspects of primate life history (e.g., predation, resource access, body size, encephalization).
In this chapter we discuss the osteology of the primate forelimb and pectoral girdle from a developmental perspective. The embryonic period of limb development is briefly described. This region in newborn hominoids (apes and humans) is discussed based on the literature and illustrated based on museum specimens. Subsequently, the forelimb skeleton of newborn tarsiers, Old World monkeys, New World monkeys, and strepsirrhines (lemurs and lorises) is described. At birth, the acromion process remains unossified in all primates but the primary center of the corocoid process is ossified in most primates. Haplorrhines generally exhibit better ossified forelimbs (especially at the wrist) than strepsirrhines. Ossification of the forelimb skeleton is most advanced in Old World monkeys and Hylobates compared to all other extant primates except Tarsius. However, ossification rapidly picks up pace postnatally in at least some strepsirrhines (e.g., galagids).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.