We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Repetitive transcranial magnetic stimulation has been employed to treat drug dependence, reduce drug use and improve cognition. The aim of the study was to analyze the effectiveness of intermittent theta-burst stimulation (iTBS) on cognition in individuals with methamphetamine use disorder (MUD).
Methods
This was a secondary analysis of 40 MUD subjects receiving left dorsolateral prefrontal cortex (L-DLPFC) iTBS or sham iTBS for 20 times over 10 days (twice-daily). Changes in working memory (WM) accuracy, reaction time, and sensitivity index were analyzed before and after active and sham rTMS treatment. Resting-state EEG was also acquired to identify potential biological changes that may relate to any cognitive improvement.
Results
The results showed that iTBS increased WM accuracy and discrimination ability, and improved reaction time relative to sham iTBS. iTBS also reduced resting-state delta power over the left prefrontal region. This reduction in resting-state delta power correlated with the changes in WM.
Conclusions
Prefrontal iTBS may enhance WM performance in MUD subjects. iTBS induced resting EEG changes raising the possibility that such findings may represent a biological target of iTBS treatment response.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.