We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To analyse the dosimetric benefit of the hybrid inverse planning optimisation (HIPO) planning method over the graphical optimisation (GrO) planning method for 3D volume-based intravaginal brachytherapy (IVBT) in a mono-centre patient cohort.
Material and methods:
Twenty-five patients surgically staged with endometrial cancer were considered for the study. All the patients had received adjuvant IVBT for three fractions with one-time computed tomography image-based planning. The data on the patient, tumour, plan, and treatment characteristics were retrieved from the database. All the plans were re-optimised with GrO and HIPO techniques for this comparison study. The different dosimetric parameters were compared between the two methods, and the collected data were tabulated and shown graphically. The statistical evaluation was performed with IBM SPSS version 26, and Origin Pro 8.5 was employed for plots.
Results:
HIPO plans show similar target coverage in terms of D 90(%), V 95(%) and conformity index with no significant statistical difference from the GrO plans with an acceptable increase in homogeneity index (0·087 ± 0·062%). It succeeds in achieving a statistically significant reduction of dose to organs at risk such as D0·1 cc, D1·0 cc and D2·0 cc for the bladder (11·59%, 4·8% and 3·99%), rectum (41·33%, 16·9% and 16·05%) and sigmoid (20·97%, 13·53% and 11·21%), respectively, in comparison with GrO optimisation.
Conclusion:
Considering the dosimetric outcome of 3D-based IVBT, it is suggested to adopt inverse optimisation techniques like HIPO over GrO to achieve higher quality treatment plan in terms of adequate target dose and lesser dose to OARs.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.