We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a given irrational number $\theta$, we define Toeplitz operators with symbols in the irrational rotation algebra ${{\mathcal{A}}_{\theta }}$, and we show that the ${{C}^{*}}$ algebra $\mathfrak{J}\left( {{\mathcal{A}}_{\theta }} \right)$ generated by these Toeplitz operators is an extension of ${{\mathcal{A}}_{\theta }}$ by the algebra of compact operators. We then use these extensions to explicitly exhibit generators of the group $K{{K}^{1}}\left( {{\mathcal{A}}_{\theta }},\mathbb{C} \right)$. We also prove an index theorem for $\mathfrak{J}\left( {{\mathcal{A}}_{\theta }} \right)$ that generalizes the standard index theorem for Toeplitz operators on the circle.
For a dense $G_\delta$-set of parameters, the irrational rotation algebra is shown to contain infinitely many C*-subalgebras satisfying the following properties. Each subalgebra is isomorphic to a direct sum of two matrix algebras of the same (perfect square) dimension; the Fourier transform maps each summand onto the other; the corresponding unit projection is approximately central; the compressions of the canonical generators of the irrational rotation algebra are approximately contained in the subalgebra.
Let ${{A}_{\theta}}$ denote the rotation algebra—the universal ${{C}^{*}}$-algebra generated by unitaries $U,V$ satisfying $VU={{e}^{2\pi i\theta }}UV$, where $\theta $ is a fixed real number. Let $\sigma $ denote the Fourier automorphism of ${{A}_{\theta}}$ defined by $U\mapsto V\text{,}V\mapsto {{U}^{-1}}$, and let ${{B}_{\theta }}={{A}_{\theta }}{{\rtimes }_{\sigma }}\mathbb{Z}/4\mathbb{Z}$ denote the associated ${{C}^{*}}$-crossed product. It is shown that there is a canonical inclusion ${{\mathbb{Z}}^{9}}\hookrightarrow {{K}_{0}}({{B}_{\theta }})$ for each $\theta $ given by nine canonical modules. The unbounded trace functionals of ${{B}_{\theta }}$ (yielding the Chern characters here) are calculated to obtain the cyclic cohomology group of order zero $\text{H}{{\text{C}}^{0}}({{B}_{\theta }})$ when $\theta $ is irrational. The Chern characters of the nine modules—and more importantly, the Fourier module—are computed and shown to involve techniques from the theory of Jacobi’s theta functions. Also derived are explicit equations connecting unbounded traces across strong Morita equivalence, which turn out to be non-commutative extensions of certain theta function equations. These results provide the basis for showing that for a dense ${{\text{G}}_{\delta }}$ set of values of $\theta $ one has ${{K}_{0}}({{B}_{\theta }})\cong {{\mathbb{Z}}^{9}}$ and is generated by the nine classes constructed here.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.