We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Whether a graph is connected, i.e., there is a path between any two of its vertices, is of particular importance. Therefore, in this chapter, we first establish the threshold for the connectivity of a random graph. We then view this property in terms of the graph process and show that w.h.p. the random graph becomes connected at precisely the time when the last isolated vertex joins the giant component. This “hitting time” result is the precursor to several similar results. After this, we deal with k-connectivity, i.e., the parameter that measures the strength of connectivity of a graph. We show that the threshold for this property is the same as for the existence of vertices of degree k in a random graph.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.