We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The head and neck cancers as a whole are the most common cancers among males in India. Technological advancements have led to an improvement in radiation therapy (RT) techniques with subsequent reduction in normal tissue complications. To correct patient set-up errors, an off-line correction method like no action level (NAL) protocol may be used as a preferred protocol particularly for a busy department. The objectives of the study were to measure the translational set-up errors using kV cone-beam computed tomography (CBCT) in patients undergoing intensity modulated radiotherapy (IMRT) in head and neck cancers and also to optimise clinical target volume (CTV) to planning target volume (PTV) margin using NAL protocol.
Material and methods:
On the first 5 days of RT, patient’s position was verified by kV-CBCT and then weekly during the course of treatment. The comparison between the reference and kV-CBCT images was performed, and the shifts measured and recorded. The mean error from the initial five consecutive fractions was corrected on the sixth daily fraction. Displacements in all the directions were measured. The population systematic and random errors were determined and used to estimate PTV margins according to the van Herk formula.
Results:
A total of 322 images were analysed. Before correction, 15, 12 and 9% patients had systematic error ≥3 mm on X, Y and Z axes, but after correction this was reduced to 9, 0 and 0%. The total percentage of patients whose set-up margin was ≥5 mm before correction was 5, 6·25, 3·75%, but after correction it reduced to 1·88, 0, and 0·63%. The margins of total population were reduced to 63, 65 and 56% after correction on X, Y and Z axes, respectively.
Conclusion:
A simple off-line NAL protocol can correct the set-up errors without daily on-line imaging in patients undergoing IMRT and hence acting as a resource sparing alternative. Five millimetre margin to CTVs was adequate and safe to overcome the problem of set-up errors in head and neck IMRT.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.