In this paper, we conceptualize, analyze, and assemble a prototype adaptive surface system capable of morphing its geometric configuration using an array of linear actuators to impose omnidirectional movement of objects that lie on the surface. The principal focus and contribution of this paper is the derivation of feedback control protocols–for regulating the actuators’ length in order to accomplish the object conveyance task–that scale with the number of actuators and the nonlinear kinematic constraints of the morphing surface. Simulations and experimental results demonstrate the advantages of distributed manipulation over static-shaped feeders.