We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In Chapter 3, we move to a semiclassical treatment (quantum theory) of light absorption and scattering, specifically from atoms. We start with a description of how lidar measures Doppler shift, and the fundamental difference between the measurement when the laser is in resonance with an atomic transition (resonant) and when it is not (nonresonant). We follow with a treatment of quantum polarizability and the resulting absorption cross section, leading to the differential resonance scattering cross section and its contrast with the classical result. After quantum polarizability, we demonstrate the radiation pattern of coherently excited atoms. This takes us to an interpretation of the Hanle Effect. Following these descriptions of the phenomena that impact resonance lidar, we extend our understanding by closing the chapter with an overview of the rudimentary physics of sodium laser guide stars.
In Chapter 8, we give an overview of the optics that control beam transmission and signal reception. We open with a description of the use and benefits of a beam expander to control the output beam divergence. From there, we move to describing receiver optics, starting with the telescope and importance of size, field of view, and using high-quality optics. This includes using an optical fiber to transport the received photons to the downstream filtering and detection optics. Next, we discuss detector characteristics and the trade-offs one must consider when selecting an appropriate photon counting sensor. We follow with a short section on the value of computer modeling the receiver optics. We close the chapter with a concise discussion of atmospheric turbulence and of laser guide stars and adaptive optics for the mitigation of atmospheric turbulence effects on astronomical telescopes.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.