To evaluate a model of the travel-route selection process for upper Ohio Valley Paleoindian foragers (13,500–11,400 cal BP), this study investigates archaeological data through the theoretical framework of landscape learning and risk-sensitive analysis. Following initial trail placement adjacent to a highly visible escarpment landform, Paleoindians adopted a risk-averse strategy to minimize travel outcome variability when wayfaring between Sandy Springs, a significant Ohio River Paleoindian site, and Upper Mercer–Vanport chert quarries of east-central Ohio. Although a least-cost analysis indicates an optimal route through the lower Scioto Valley, archaeological evidence for this path is lacking. Geomorphic and archaeological data further suggest that site absence in the lower Scioto Valley is not entirely due to sampling bias. Instead, evidence indicates that Paleoindians preferred travel within the Ohio Brush Creek–Baker's Fork valley despite its longer path distance through more rugged, constricted terrain. Potential travel through the lower Scioto Valley hypothesizes high outcome variability due to the stochastic nature of the late Pleistocene hydroregime. In this case, perceived outcome variability appears more influential in determining travel-route decisions among Paleoindians than direct efforts to reduce energy and time allocation.