Feeding broilers by alternating different diets for 1 or 2 days is known as sequential feeding, and it possibly reduces leg problems since it slows down early growth and may enhance general activity. The present study compared continuous feeding with a standard diet (C: metabolisable energy = 12.55 MJ/kg, crude protein = 190 g/kg) with alternations of a high-energy/low-protein diet (E+P−:+7% ME; −20% CP) and a low-energy/high-protein diet (E−P+: −7% ME,+20% CP) and investigated its effects on growth, behaviour and gait score in 352 male Ross broiler chickens. Sequential feeding was carried out during ten 48-h sequential-feeding cycles from 8 to 28 days of age. Three treatments were compared: complete diet (C) and two alternations of diets varying in protein and energy contents (S1: E+P− followed by E−P+; and S2: E−P+ followed by E+P−). Chickens received the same feed during the starter and finisher periods (0 to 7 and 29 to 38 days of age). Body weight (BW), feed intake, general activity and gait score, bone quality and carcass conformation were measured to evaluate leg condition and general performance. Sequential feeding significantly reduced BW at 28 days of age (S1: −9.1%; S2: −3.7%/C group; P < 0.05) and S1 were lighter than S2. In both sequential groups, time spent standing increased (C: 28%; S1:33%; S2: 35%; P < 0.05) and leg abnormalities decreased (mean gait score: C: 2.61; S1: 2.45; S2: 2.38; P < 0.02). This improvement was not related to changes in bone quality. BW at slaughter was impaired in Group S1 only, and the feed conversion ratio throughout the rearing period was not significantly impaired by sequential feeding. However, abdominal fat was higher in the S2 group. Sequential feeding using diets varying in energy and crude protein can be a useful method of reducing leg problems in broilers since it improves gait score without impairing growth performance when used as early as 8 days of age and up to not less than 8 days before slaughter in order to compensate for reduced growth. This improvement can be explained by reduced early growth and enhanced motor activity. However, it appears that the low-energy diet should be given first in order to avoid a reduction in BW at slaughter.