We consider a continuous-time Markov additive process (Jt,St) with (Jt) an irreducible Markov chain on E = {1,…,s}; it is known that (St/t) satisfies the large deviations principle as t → ∞. In this paper we present a variational formula H for the rate function κ∗ and, in some sense, we have a composition of two large deviations principles. Moreover, under suitable hypotheses, we can consider two other continuous-time Markov additive processes derived from (Jt,St): the averaged parameters model (Jt,St(A)) and the fluid model (Jt,St(F)). Then some results of convergence are presented and the variational formula H can be employed to show that, in some sense, the convergences for (Jt,St(A)) and (Jt,St(F)) are faster than the corresponding convergences for (Jt,St).