We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider an optimal control problem with an 1D singularly perturbed differential state equation. For solving such problems one uses the enhanced system of the state equation and its adjoint form. Thus, we obtain a system of two convection-diffusion equations. Using linear finite elements on adapted grids we treat the effects of two layers arising at different boundaries of the domain. We proof uniform error estimates for this method on meshes of Shishkin type. We present numerical results supporting our analysis.
We derive a posteriori estimates for a discretization in space of the standardCahn–Hilliard equation with a double obstacle free energy.The derived estimates are robust and efficient, and in practice are combinedwith a heuristic time step adaptation. We present numerical experiments in two and three space dimensions and compareour method with an existing heuristic spatial mesh adaptation algorithm.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.