We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the limit of an asymptotically large diffusivity ratio of order $\mathcal{O}$(ϵ−2) ≫ 1, steady-state spatially periodic patterns of localized spots, where the spots are centred at lattice points of a Bravais lattice, are well-known to exist for certain two-component reaction–diffusion systems (RD) in $\mathbb{R}$2. For the Schnakenberg RD model, such a localized periodic spot pattern is linearly unstable when the diffusivity ratio exceeds a certain critical threshold. However, since this critical threshold has an infinite-order logarithmic series in powers of the logarithmic gauge ν ≡ −1/log ϵ, a low-order truncation of this series is expected to be in rather poor agreement with the true stability threshold unless ϵ is very small. To overcome this difficulty, a hybrid asymptotic-numerical method is formulated and implemented that has the effect of summing this infinite-order logarithmic expansion for the stability threshold. The numerical implementation of this hybrid method relies critically on obtaining a rapidly converging infinite series representation of the regular part of the Bloch Green's function for the reduced-wave operator. Numerical results from the hybrid method for the stability threshold associated with a periodic spot pattern on a regular hexagonal lattice are compared with the two-term asymptotic results of [10] (Iron et al. J. Nonlinear Science, 2014). As expected, the difference between the two-term and hybrid results is rather large when ϵ is only moderately small. A related hybrid method is devised for accurately approximating the stability threshold associated with a periodic pattern of localized spots for the Gray-Scott RD system in $\mathbb{R}$2.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.