We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter discusses a procedure for quantifying differences between two covariance matrices. Despite being applicable to a range of statistical problems, the general procedure has no standard name. In this chapter, we call it Covariance Discriminant Analysis (CDA). CDA finds the linear combination of variables that maximizes the ratio of variances. More generally, CDA decomposes two multivariate time series, separately, into components ordered such that the variance ratio of the first component is maximized, and each succeeding component maximizes the variance ratio under the constraint that it is uncorrelated with the preceding components. This technique is used in numerous other multivariate techniques, including canonical correlation analysis, predictable component analysis, and multivariate ANOVA. CDA also is used to identify low-frequency components that maximize the ratio of low-frequency to high-frequency variance. To mitigate overfitting, the standard approach is to apply CDA to a few principal components. No standard criterion exists for choosing the number of principal components. A new criterion is proposed in this chapter.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.