Most zoned plutons described in the geological literature have mafic rims and felsic cores and are referred to as “normally zoned”, whereas relatively few “reversely zoned” intrusions (felsic rims and mafic cores) have been described. That unusual zonation pattern has been variously attributed to in situ processes or to the reordering of an underlying, vertically stratified, magma chamber either by intrusion through an orifice or by emplacement of composite diapirs. The Turtle Pluton is an early Cretaceous, reversely zoned, intrusion that is divided into four facies: a Rim Sequence that is graditionally zoned from bt + ilm + muse monzogranite to hb + bt + mt + sph granodiorite; a Core Facies of more homogeneous hb + bt + mt + sph granodiorite to quartz monzodiorite; between these two facies, a structural discontinuity termed the Schlieren Zone; and an Eastern Facies of monzogranite to granodiorite. Field relationships, distribution of strain, and geochemical and isotopic studies (including a range of initial87Sr/86Sr from 0·7085–0·7065) suggest that the reverse zonation of the Turtle Pluton is the result of sequential emplacement of two diapirs each derived from the same underlying, vertically stratified, magma chamber, and that the Rim Sequence zonation is chiefly the result of mixing of intermediate and felsic magmas from distinct sources accompanied by minor fractional crystallisation.