In this paper, we consider a risk model in which each main claim induces a delayed claim called a by-claim. The time of delay for the occurrence of a by-claim is assumed to be exponentially distributed. From martingale theory, an expression for the ultimate ruin probability can be derived using the Lundberg exponent of the associated nondelayed risk model. It can be shown that the Lundberg exponent of the proposed risk model is the same as that of the nondelayed one. Brownian motion approximations for ruin probabilities are also discussed.