Vertically transmitted symbionts can be maintained in a host population only if they do not reduce host fitness, unless they compensate by manipulation of their host's reproduction or have alternative mode of transmission. In Leptopilina boulardi, a parasitoid of Drosophila larvae, some females are infected by viral particles showing both maternal and horizontal transmission. Horizontal transmission occurs when larvae from infected and uninfected individuals of L. boulardi compete in the same host. This situation is facilitated by the increasing tendency to accept already parasitized hosts that viral infection induces in L. boulardi females. Estimation of the adaptive significance of this behavioural modification requires measuring the effect of viral presence on other parasitoid physiological features. Here, we show that viral infection in females imposes no cost on adult survival, a low cost on developmental rate and tibia length, and leads to a strong reduction of locomotor activity. Surprisingly, infected females show higher egg load which could be accounted for by a redirection of energy allocation to egg production. The high intensity of superparasitism in infected females induced a dramatic decrease in pre-imaginal survival of the parasitoid's offspring, representing a potential indirect cost of infection. Low overall pathogeny induced by viral particles appears to be well suited to both transmission modes, both of them requiring females ability to locate and (super)parasitize hosts.