We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Solutions of the Einstein and Einstein–Maxwell equations for spherically symmetric metrics (those of Schwarzschild and Reissner–Nordstr\“{o}m) are derived and discussed in detail. The equations of orbits of planets and of bending of light rays in a weak field are derived and discussed. Two methods to measure the bending of rays are presented. Properties of gravitational lenses are described. The proof (by Kruskal) that the singularity of the Schwarzschild metric at r = 2m is spurious is given. The relation of the r = 2m surface to black holes is discussed. Embedding of the Schwarzschild spacetime in a 6-dimensional flat Riemann space is presented. The maximal extension of the Reissner–Nordstr\“{o}m metric (by the method of Brill, Graves and Carter) is derived. Motion of charged and uncharged particles in the Reissner–Nordstr\“{o}m spacetime is described.
This is an encyclopaedia of basic knowledge about the Kerr metric and related topics. It includes, among other things, the original Kerr derivation from Einstein’s equations via the Kerr–Schild metrics, the Carter derivation from the separability of the Klein–Gordon equation (a by-product thereof is the generalisation to nonzero cosmological constant), the derivation (with illustrations) of the formulae for the event horizons and stationary limit hypersurfaces, the derivation of Carter’s fourth first integral of geodesic equations, the discussion of properties of general geodesics and of geodesics in the equatorial plane, the maximal analytic extension by Boyer and Lindquist, the Penrose process of extracting angular momentum from a rotating black hole and the Bardeen proof of existence of locally nonrotating observers in a stationary-axisymmetric spacetime.
It is known that if a topological property of Tychonoff spaces is closed-hereditary, productive and possessed by all compact Hausdorff spaces, then each (0-dimensional) Tychonoff space X is a dense subspace of a (0-dimensional) Tychonoff space with such that each continuous map from X to a (0-dimensional) Tychonoff space with admits a continuous extension over . In response to Broverman's question [Canad. Math. Bull. 19 (1), (1976), 13–19], we prove that if for every two 0-dimensional Tychonoff spaces X and Y, if and only if , then is contained in countable compactness.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.