We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $L$ be a finite distributive lattice. Let $\text{Su}{{\text{b}}_{0}}(L)$ be the lattice
$$\{S\,|\,S\,\text{is}\,\text{a sublattice of }L\}\cup \{\phi \}$$
and let ${{\ell }_{*}}[\text{Su}{{\text{b}}_{0}}(L)]$ be the length of the shortest maximal chain in $\text{Su}{{\text{b}}_{0}}(L)$. It is proved that if $K$ and $L$ are non-trivial finite distributive lattices, then
The covering relation in the lattice of subuniverses of a finite distributive lattices is characterized in terms of how new elements in a covering sublattice fit with the sublattice covered. In general, although the lattice of subuniverses of a finite distributive lattice will not be modular, nevertheless we are able to show that certain instances of Dedekind's Transposition Principle still hold. Weakly independent maps play a key role in our arguments.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.