Robust schemes in regression are adapted to mean and covariance structure analysis, providing an iteratively reweighted least squares approach to robust structural equation modeling. Each case is properly weighted according to its distance, based on first and second order moments, from the structural model. A simple weighting function is adopted because of its flexibility with changing dimensions. The weight matrix is obtained from an adaptive way of using residuals. Test statistic and standard error estimators are given, based on iteratively reweighted least squares. The method reduces to a standard distribution-free methodology if all cases are equally weighted. Examples demonstrate the value of the robust procedure.