In this paper, various types of finite mixtures of confirmatory factor-analysis models are proposed for handling data heterogeneity. Under the proposed mixture approach, observations are assumed to be drawn from mixtures of distinct confirmatory factor-analysis models. But each observation does not need to be identified to a particular model prior to model fitting. Several classes of mixture models are proposed. These models differ by their unique representations of data heterogeneity. Three different sampling schemes for these mixture models are distinguished. A mixed type of the these three sampling schemes is considered throughout this article. The proposed mixture approach reduces to regular multiple-group confirmatory factor-analysis under a restrictive sampling scheme, in which the structural equation model for each observation is assumed to be known. By assuming a mixture of multivariate normals for the data, maximum likelihood estimation using the EM (Expectation-Maximization) algorithm and the AS (Approximate-Scoring) method are developed, respectively. Some mixture models were fitted to a real data set for illustrating the application of the theory. Although the EM algorithm and the AS method gave similar sets of parameter estimates, the AS method was found computationally more efficient than the EM algorithm. Some comments on applying the mixture approach to structural equation modeling are made.