We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Skin care practices for radiotherapy patients are complicated by dosimetric concerns. This study measures the effect on skin dose of various topical agents and dressings.
Materials and methods
Superficial doses were measured under 17 topical agents and dressings and three clinical materials for reference. Dose was measured using a MOSFET detector under a 1 mm polymethyl methacrylate slab, with 6 MV photon beams at 100 cm source to surface distance.
Results
Relative skin dose under reference materials was 128% (thermoplastic mask), 158% (5 mm bolus) and 171% (10 mm bolus). Under a realistic application of topical agent (0·5 mm), relative skin doses were 106–111%. All dry dressings yielded relative dose of ≤111%; two wet dressings yielded higher relative doses (133 and 141%).
Conclusions
Under clinically relevant conditions, no cream, gel or dry dressing increased the skin dose beyond that seen with a thermoplastic mask. Dressings soaked with water produced less skin dose than 5 mm bolus. This may be unacceptable if wet dressings are in place for the majority of the treatment course. Our results suggest that skin care practices should not be limited by dosimetric concerns when using a 6 MV photon beam.
Patient teaching in radiation therapy may include restrictions on applying skin products owing to concerns that the presence of such materials may increase skin dose. These restrictions may create unnecessarily complicated and conflicting self-care instructions.
Purpose
To determine what thickness of skin product is necessary to produce a clinically meaningful dose increase to the skin, and provide recommendations for evidence-based patient instructions.
Methods
Dosimetric measurements and Monte Carlo simulations were used to calculate skin dose under 0–1·5 mm thicknesses of two common classes of skin product for a variety of treatment geometries. The thickness of product required to produce a clinically significant dose increase to the skin was determined.
Results
The thickness of product required to create a clinically meaningful dose increase was >0·7 mm for 10 × 10 cm2 fields and >1·5 mm for 1 × 1 cm2 fields. A typical application of product would be only 0·3 mm.
Conclusion
It seems unrealistic to anticipate patients using sufficiently large quantities of skin product to be of clinical concern. We therefore recommend that there are no dosimetric reasons to restrict the use of these types of skin products during radiation therapy for common treatment scenarios.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.