We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For a centre-by-metabelian pro-$p$ group $G$ of type $\text{FP}_{2m}$, for some $m\geqslant 1$, we show that $\sup _{M\in {\mathcal{A}}}$ rk $H_{i}(M,\mathbb{Z}_{p})<\infty$, for all $0\leqslant i\leqslant m$, where ${\mathcal{A}}$ is the set of all subgroups of $p$-power index in $G$ and, for a finitely generated abelian pro-$p$ group $V$, rk $V=\dim V\otimes _{\mathbb{Z}_{p}}\mathbb{Q}_{p}$.
A group $G$ is self dual if every subgroup of $G$ is isomorphic to a quotient of $G$ and every quotient of $G$ is isomorphic to a subgroup of $G$. It is minimal non self dual if every proper subgroup of $G$ is self dual but $G$ is not self dual. In this paper, the structure of minimal non self dual groups is determined.
Let G be a p-group of maximal class of order pn. It is shown that the order of the group of all automorphisms of G centralizing the Frattini quotient takes the maximum value p2n−4 if and only if G is metabelian. A structure theorem is proved for the Sylow p-subgroup, Autp(G), of the automorphism group of G when G is metabelian. For p=2, Aut2(G) is the full automorphism group of G. For p=3, we prove a structure theorem for the full automorphism group of G.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.