A protocol of infrequent, but strategically timed milk-sampling was established for predicting the time of ovulation, and thus the optimum time for insemination, in lactating dairy cows. In the experimental group (no. = 49), the time of ovulation was predicted on the basis of a fall in milk progesterone concentrations, which was identified by the use of ‘on-farm’ progesterone assay kits. Reproductive performance in these animals was compared with that in control cows (no. = 45) that were inseminated solely on the basis of oestrous detection by stockmen. The accuracy of ovulation prediction, and of oestrous detection, was assessed from progesterone profiles based on milk samples collected three times weekly from all 94 cows. These milk samples were analysed by laboratory enzyme-immunoassay after the end of the trial.
Over the period during which milk samples were monitored with ‘on-farm’ progesterone kits, a total of 88 ovulations occurred in the experimental group. The progesterone-testing protocol accurately predicted 87 (99%) of these. Over the same period, there was a total of 81 ovulations in the control group and 63 (78%) of these were associated with correct oestrous detection. Conception rates to correctly timed insemination did not differ significantly between groups, but by the end of the three-cycle experimental period, significantly more of the cows in the experimental group (21·8%) than in the control group (4·8%; P < 0·05). In contrast, the use of ‘on-farm’ progesterone results to confirm oestrus avoided any mistimed inseminations (13% of inseminations in the control group). By using the milk-sampling and ‘on-farm’ progesterone-testing protocol, only 1% of ovulations were not accompanied by a correctly timed insemination. This compared with 22% of ovulations in the control group not associated with an insemination because oestrus was not detected. By ensuring that all ovulations are associated with a correctly timed insemination, herd reproductive performance can be significantly improved.