A continuous selection and a coincidence theorem are proved in H-spaces which generalize the corresponding results of Ben-El-Mechaiekh-Deguire-Granas, Browder, Ko-Tan, Lassonde, Park, Simon and Takahashi to noncompact and/or nonconvex settings. By applying the two theorems, some intersection theorems concerning sets with H-convex sections are obtained which generalize the corresponding results of Fan, Lassonde and Shih-Tan to H-spaces. Some applications to minimax principle are given.