Let (N,ℝ,θ) be a centrally ergodic W* dynamical system. When N is not a factor, we show that for each nonzero real number t, the crossed product induced by the time t automorphism θt is not a factor if and only if there exist a rational number r and an eigenvalue s of the restriction of θ to the center of N, such that rst=2π. In the C* setting, minimality seems to be the notion corresponding to central ergodicity. We show that if (A,ℝ,α) is a minimal unital C* dynamical system and A is not simple, then, for each nonzero real number t, the crossed product induced by the time t automorphism αt is not simple if there exist a rational number r and an eigenvalue s of the restriction of α to the center of A, such that rst=2π. The converse is true if, in addition, A is commutative or prime.