We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
When dealing with instructional information, working memory can be divided into auditory and visual processors. The capacity limits of each processor are a major impediment when students are required to learn new material. Nevertheless, there is one strategy that can effectively expand working memory capacity by using the partially independent status of the auditory and visual processors. Under specific and well-defined conditions, presenting some information in visual mode and other information in auditory mode can increase effective working memory capacity and so reduce the effects of cognitive overload. This effect is called the instructional modality effect or modality principle. It is an instructional principle that can substantially increase learning. This chapter discusses the theory and data that underpin the principle and the instructional implications that flow from the principle.
When a multimedia lesson containing complicated material is presented at a fast pace, the result can be a form of cognitive overload called essential overload. Three multimedia design methods intended to minimize essential overload are the segmenting, pre-training, and modality principles. The segmenting principle is that people learn more deeply when a multimedia message is presented in learner-paced segments rather than as a continuous unit. The pre-training principle is that people learn more deeply from a multimedia message when they know the names and characteristics of the main concepts. The modality principle is that people learn more deeply from a multimedia message when the words are spoken rather than printed.
The modality effect refers to a cognitive load learning effect that occurs when a mixed-mode (partly visual and partly auditory) presentation of information is more effective than a single-mode (either visual or auditory alone) presentation of the same information. For learning to occur, novel material must be organised and incorporated into long-term memory via a limited working memory. For instruction to be effective, it has to be designed in ways in which the limitations of working memory are overcome. As distraction and interference impose an additional memory load, their impact on the limited working memory system has to be taken into consideration in a multimedia context where the different formats of words and pictures allow for many possible ways of presenting information. The instructional predictions that flow from the experimental work on the modality effect are straightforward. From a practical perspective, the modality effect provides guidelines for effective instruction.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.