The paper presents the error characteristics of a vehicle dynamic model (VDM)-based integration architecture for fixed-wing unmanned aerial vehicles. Global navigation satellite system (GNSS) and inertial measurement unit measurements are fused in an extended Kalman filter (EKF) which uses the VDM as the main process model. Control inputs from the autopilot system are used to drive the navigation solution. Using a predefined trajectory with segments of both high and low dynamics and a variable wind profile, Monte Carlo simulations reveal a degrading performance in varying periods of GNSS outage lasting 10 s, 20 s, 30 s, 60 s and 90 s, respectively. These are followed by periods of re-acquisition where the navigation solution recovers. With a GNSS outage lasting less than 60 s, the position error gradually grows to a maximum of 8⋅4 m while attitude errors in roll and pitch remain bounded, as opposed to an inertial navigation system (INS)/GNSS approach in which the navigation solution degrades rapidly. The model-based approach shows improved navigation performance even with parameter uncertainties over a conventional INS/GNSS integration approach.